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ON THE EUCLIDEAN NATURE 
OF FOUR CYCLIC CUBIC FIELDS 

H. J. GODWIN AND J. R. SMITH 

ABSTRACT. It is shown that the cyclic cubic fields with discriminants 1032, 1092, 
1272, and 1572 are Euclidean 

1. INTRODUCTION 

If a cyclic cubic field is Euclidean, then it necessarily has class number one, 
and so its discriminant is either 81 or d2, where d (here and below) denotes a 
prime such that d 1 (mod 6). Over the years it has been established that only 
finitely many d are possible (Heilbronn [2]), that d cannot lie between 157 
and 10000 (Smith [5]), and that the only uncertain values of d below 10000 
are 103, 109, 127, and 157 (Smith [5]). In the present paper we show that 
these last four values do in fact give Euclidean fields. 

2. NOTATION 

We can represent d uniquely as (v2 + 27w2)/4 with v -- 2 (mod 3) and 
w > 0. It is easy to verify that r = (d - 1)/3, s = (vd - 3d + 1)/27, t = 
-(v + 3w + 4)/6, and u = (v + 2 + 9w - 4d)/18 are all rational integers. The 
field can be defined by the equation x3 - x2 - rx - s = 0 and, if 0 is one root, 
the others are (0 = (62 + tO + u)/w and V = ((02 + t(o + u)/w. An integral basis 
for the field is (1, 0, ) . 

Let xl = a+b0+c(o, Yi = a+b?o+cyi, z1 = a+by'+cO, with a, b, c ratio- 
nal integers; we denote the region I(x-xl)(y-yl)(z- zl)I < K by H(a, b, c), 
where K is some real number. If we can cover a fundamental region of the 
lattice of integers of the field by regions H(a, b, c), with K < 1 , then the field 
is Euclidean. Since the lattice may be reflected in the origin, and the values 
0, (0, and V/ may be permuted cyclically without altering the lattice, it is in 
fact sufficient to cover one-sixth of the fundamental region, and we chose to 
cover 0<a, 8, y < 1, a+,8 < 1, y < ,f,where x=a+,80f+y( , etc.;we 
denote this region by S. 

3. SCHEME OF CALCULATION 

For brevity we call a rectangular parallelepiped, with faces parallel to the 
coordinate planes, a box, which can be divided into subboxes by planes parallel 
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to the faces of the box. We embed S in a set of boxes with unit sides, checking 
that the volumes of the portions of S in each box add up to the correct total. 
We then deal with each box in turn. A list of useful sets (a, b, c) is started by 
taking b = c = 0 and a equal to one of the coordinates of a vertex of the box. 
If the box is not covered by any H(a, b, c) on the list, the box is subdivided by 
choosing the number of subdivisions of each coordinate, and the subboxes dealt 
with in turn (having first checked that the subbox lies wholly or partly in S). 
If we still fail to get a covering, a search is made for suitable centers a, b, c by 
spiralling outwards from the origin in the b, c plane, up to a specified bound 
on Ibl, Icl. If a center is found that covers a subbox, H(a, b, c) is added to 
the list and used for later subboxes. If only a portion of the unit cube is covered 
after a time, the process can be repeated with a box, smaller than the unit cube, 
containing the uncovered region. 

It is undesirable for b and c to be too large, because of rounding errors, 
and so in some cases use was made of automorphic transformations. (See [1] 
for the use of these in connection with quadratic fields, and [3, 4, 5] for their 
use with cubic fields.) We multiply x, y, and z by the components of the 
fundamental unit of the field: this leaves the integral lattice unchanged and 
transforms a subbox a into one with dimensions expanded in some directions 
and contracted in others. By a shift with integral values of the coordinates, this 
is equivalent to a congruent region in S, and if this has already been covered, 
then a must be covered also. 

The original intention was to run the program interactively on a VAX system 
and so the choices of subdivision could be made at the time. When covering 
took too lorng for the VAX, the work was completed in batch mode on a CYBER 
840, which was faster and had a 48-bit mantissa. The CYBER was also used to 
check all the work. 

To guard against round-off error, K was taken to be 0.9999, and the in- 
equalities defining S were required to be satisfied with a difference of at least 
10-4 (on the VAX) or 10-10 (on the CYBER). 

In this way we have succeeded in covering with K < 1 in each case. 

4. THE DIFFICULTY WITH 157 

The cases d = 103, 109, and 127 were dealt with fairly easily, but d = 157 
required many hours of CYBER time before a covering was obtained, and we 
have tried to find a reason for this. There seem a priori to be two possibilities: 

(i) that a slightly smaller value of K would be unable to produce a covering, 
and 

(ii) that the size of at least one of the components of the fundamental unit is 
large, so that the subbox has to have at least one very small dimension before 
an automorphic transformation can be used. 

We denote the lower bound of values of K that could provide a covering 
by M(d) (this is the inhomogeneous minimum of the norm-form). From Heil- 
bronn's method [2] we can find a lower bound for M(d) as follows. Partition 
the cubic residues of d in (1, d - 1) into two sets: C* consisting of residues 
that are the product of two coprime nonresidues, and C the remainder. If we 
can find p and d - p E C*, then the field is non-Euclidean. Otherwise, let p 
be the least member of C* such that d - p E C. Then M(d) > (d - p)/d. In 
many cases this bound is sharp, but not, for example, for d = 73. 
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For the four fields considered in this paper we find: 

M(103) > 93/103 = 0.902.. ., M(109) > 76/109 = 0.697... 
M(127) > 94/127 = 0.740..., M(157) > 118/157 = 0.751.... 

The components of the fundamental units of the four fields have the following 
approximate values: 

103 40.957 -5.95 -0.0041 
109 -1338.2 1.203 -0.00063 
127 426.4 -115.4 -0.000020 
157 -9142 0.000036 -3.01 

We have been unable to improve the Heilbronn bound on M( 157), and so 
cannot support reason (i). Since 109 gave somewhat more difficulty than 103 
and 127, reason (ii) appears to be the likely one, though we are still surprised 
at the extent to which the difficulty was magnified. 
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